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A unified treatment of  liquid junction potentials and membrane  potentials which accounts for both 
ionic and solvent transfers at homoionic junctions between ultra concentrated electrolyte solutions, 
also in terms of  the primary hydrat ion parameters and the Stokes-Robinson hydrat ion theory, is 
described. Application to the determination of  cation transference numbers, -c+, water transference 
numbers, %, and primary hydrat ion numbers, h, is described as a rational scheme for characterization 
of  concentrated electrolytes as possible new salt bridges for the minimization of  liquid junction 
potentials in electroanalysis. Examples of  application of  this scheme are presented based on multiple 
regression analysis of  electromotive force measurements of  such homoionic concentration cells as 
Irl C121 He1 (m2) II HC1 (m~) [ Cle [Ir and Hgl Hg2SO41 Li2SO4 (m2) II Li2SO4 (m~) I Hg2SO41 Hg, with 
fixed ml molality and varied m2 molality. Based on the electromotive force of  analogous homoionic 
transference cells but with interposed membranes,  application of  the present procedure can be 
extended to the determination of  ion and solvent transport  parameters,  notably the degree of  
permselectivity, of  membranes for use either as selective sensors in electroanalysis or selective 
separators in industrial electrochemistry. 

1. Introduction 

The liquid junction potential (EL) and the membrane 
potential (EM) are notorious among the electro- 
chemist's delights and, although physically the latter 
is simply an extreme case of the former, textbooks of 
electrochemistry have long since developed two 
distinct lines of approach, with distinct networks of 
operational equations, probably for didactic reasons. 
EL and EM, however, are expressions of the same 
phenomenology of irreversible diffusional processes 
and, as components of the electromotive force (e.m.f.) 
E of homoionic transference cells (or Helmholtz cells) 
with and without interposed membranes, respectively, 
they are usefully amenable to the same basic equations, 
as will be seen later. 

Both EL and EM originate from the overlap of an ion 
transfer contribution E~T and a solvent transfer 
contribution EsT (whose determination offers some 
recurrent problems) and, while E~x is generally the 
object of critical and exhaustive analysis, it is not so 
with Es~. In fact, in textbooks of electrochemistry 
(almost without exception [1]) EsT is ignored altogether 
when dealing with EL, probably relying tacitly on the 
dilution level of solutions forming the liquid junctions 
in practical cases. (Although when dealing with EM, 
the EsT contribution is ignored only within the sector 
of high-selectivity membranes used as sensors in ion- 
selective electrodes). Neglect of EsT in EL, however, is 
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no longer tolerable when the e.m.f. E of the Helmholtz 
cell is, for example, used for the characterization of 
new highly-concentrated salt bridges. This also will be 
shown later on. 

2. General equations for the e.m.f, of homoionic 
transference cells with and without interposed 
membranes 

Let us consider the following homoionic transference 
cell: 

C I CA (m) in solvent S II 

CA (m + din) in solvent SIC (1) 

where the double bars [1 indicate the location of the 
liquid junction potential, E L (or of the membrane 
potential EM, if there is inserted an appropriate mem- 
brane); CA is a simplified notation for the strong 
binary electrolyte C2+ + A~-, one mole of which forms 
n+ moles of cations C Z+ of valency z+ and n moles of 
anions A z of valency z (here taken with sign), with 
n = n+ + n ; and C denotes a first-kind electrode 
reversible to the above cation C Z+ . The cell diagram is 
written in compliance with the Stockholm Convention 
of IUPAC [2-4]. Considering the ion transfer processes 
and the solvent transfer process occurring at II, in 
combination with the two Faradaic reactions at the 
above electrodes C, with reference to 1 faraday of 
charge (that is, equivalent to a mole of electrons [5]), 
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one can write the overall cell reaction. The latter 
implies that, from the upper molality m + dm to the 
lower molality, m, (~ z / z+n+)  moles of CA are 
transferred together with - %  moles of solvent S, the 
definition of the transference numbers z's cited being 
[6, 7] the number of moles of the denoted species that 
are transferred from the anode (negative terminal of 
cell) to the cathode (positive terminal of cell) per 
faraday (or, per mole of  electrons). Thus for the 
electrolyte CA we have: 

z+,+ + z ~ = 1 

where all of the ionic products zz are positive because 
~_ is negative by definition and z is taken with its 
(negative) sign; for the solvent S, % may be either 
positive or negative according to experimental con- 
ditions, to be ascertained by independent tests [8-10]. 
This is known as the 'signed' definition of transference 
numbers [6, 7], which is equally valid for charged 
species (the ions) and uncharged species (the solvent S) 
[8-10]. The alternative, traditional, and much more 
popular 'unsigned' or 'electric' [7] definition (the 
transference number, t+ or t , of an ion in a given 
electrolyte solution is the fraction of the total electric 
current carried in the solution by that ion) leads to the 
well known relation t+ + t = 1 where both t's are 
positive, and are obviously inapplicable to uncharged 
species. For the ions of the above binary electrolyte 
CA we have: 

t+ = Z+'C+, t_ ~ Z "C 

From the overall reaction of the homoionic trans- 
ference Cell (1) we can write for the related infinitesimal 
e.m.f, dE~: 

dE1 = nke (n~+)z-z d In (mT) - kezs d In (a~) 

= + ~sMsm d In (m?) (4) 

where k~ = RT/F  (with R = gas constant, 
F = Faraday's constant, and T = absolute tempera- 
ture), ~ is the mean molal activity coefficient of  CA, 
and Ms the molar mass (kg mol -~) of the solvent S. 
Since ~+ and -c are complementary quantities 
through Equation 2, the alternative homionic trans- 
ference cell (5), with electrodes now reversible to the 
anion A ~- , could be used instead of Cell (1) for their 
determination: 

A I CA (m + din) in solvent S II 

CA (m) in solvent S[A 

In this case the overall cell reaction implies that, from 
the upper molality m + dm to the lower molality m, 
there is the transfer of (z+ ~ + / n  I z_ I) moles of CA 
together with + ~  moles of solvent S, per faraday. 
Thus for the corresponding infinitesimal e.m.f, dE5 we 

have: 

dE5 = nkr ( z+z+ "] d In (mT) + k&'s d In (a~) 
\n ]z_[fl 

[ (  z+z+ ~ _-c~M~rn]dln nk e (m~) (6) 
L\n-Iz_ l/ I 

Unification of Equations 4 and 6 can be best achieved 
by using the same terminology of membrane potentials, 
in terms of the cell (7). That is, 

(2) J lIJ (m) in S [[ IJ (m + d m )  in S IJ (7) 

where IJ is simplified notation for the general strong 
z I zj binary electrolyte I,j J,~ where the ion jzj to which the 

electrodes J are reversible is called the colon, and the 
ion I z~ of opposite charge sign is called the counterion 
(and is the ion whose transference number ~ is actuallly 
determined from the cell e.m.f.). Of course, we have 
n = n~ + nj and, for the ion transference numbers 
involved: 

ZIT 1 + ZjZj = 1; t 1 + tj = l; 

t~ = z~z~; tj : zjz~ (8) 

It may be noted that the cell (7) diagram is, as such, 
written in keeping with the Stockholm Convention 
only if j z j  is a cation; if instead J~'J is an anion, the 
left-hand terminal of cell would be positive, and 
the cell diagram should be reversed, namely, the 
(rn + rim) molality should be written on the left-hand 
side [2-4]. (3) 

The general expression for the infinitesimal e.m.f. 
dE of Cell (7), which comprises both Equations 4 and 
6, remembering that n~ 1 zj] = n~ ] z~ ], is: 

[ (  J~Z,~, x~ ( Zj ) 1 
d e  = k e L \ n - - - ~ j r / d l n ( m y ) -  ~ -  z sd ln (a s )  

\n j I z j I ]  ( z ~  + njzj'csM~m ) d In (roT) (9) 

It is clear that in the limit at z~r~ = 1 and ~ = 0 the 
cell e.m.f, reaches its maximum value dEmax, where 

dEma~ ( nk~ ~ d l n ( m T )  = ( nke 
=" \r/j I Zj I /  \rtI [Zl [ } d In (my) 

(lO) 

a value which, in finite terms, can be conveniently 
calculated from known ? values, thus dispensing with 
direct e.m.f, measurements. From Equations 9 and 10 
we have the thermodynamically exact relation: 

dE/dEm, • = zlz I + njzj'c~Msm 

= tl + njzj~Msrn = ~b (11) 
(5) 

which is the basis for the determination of trans- 
ference numbers z~ and z~ from the finite e.m.f. E of 
Cell (7) and finite E ,~ ,  namely, working with finite 
molalities m 2 and m~ (instead ofm + dm and m), with 
rrt2 > ml and one of these (say ml) fixed and the other 
varied. Representing E as a function of Ema~, for 
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example, by a least-squares polynomial of the type 

E = bEmax + cE~a,, + dE3max... (12) 

(where the curve passes through the origin of axes as 
E = 0 = Emax at m2 = rnl), one then gets 

dE/dEma x = b q- 2cEma x n t- 3dEm2ax... = ~b 
(13) 

which can be inserted into (1 l) for the optimization of 
q and rs (or of tl and L) by also programming the 
respective first derivatives of the function ~b: 

d~/dq = zi and dqS/dzs = njzjMsrn, 04) 

as resulting from Equation 11. It can be shown that 
the molality m in Equations 11 and 14 to which z~ and 
z~ must be referred is the variable one (rn2, in the 
example chosen above). 

Interpretation of E in finite terms proceeds through 
integration of Equation 9 and requires assuming 
q and z~ to be constant in the m~ to m2 interval, 
where m~ and m2 are the lower and the upper 
limit of integration, respectively. Thus, noting that 
m d l n ( m T ,  = d m  + m d l n 7  and that the lower 
solvent activity as~ corresponds to the upper electro- 
lyte molality rn2, we have from (9): 

~( F/ZI "L', ~ m2 
E = kc i_\n llzllj f2t d In (m?) 

-- % d In (as) 1 

[ (  r/Z,~'l ~ //m2 7 2 ) ( z j )  (as2"]q 
= ke[_\n, l z l l j l n ~ )  + ~j[ z s l n @ 7 / d  

= ( n k e ~ [ f 2 2  \njlzjI  j 1 z(q d In (m7) 

..-}- jmml nJZjZsMsm d ln (m?)] 

( /'/ke "~ [ (m2'2~ 
= \n j I z j l ]  zlzl In \ rnlyl /  

+ njZjZsMs { ( m 2 - m , ) +  fmTmdln?}J (15, 

�9 m2 
where the integral ~m rn d In 7 is easily solved graphi- 
cally from knowledg~ of 7 as a function of electrolyte 
I J, molality m. Of course, integration of Equation 10 
for Emax is immediate and gives: 

= ( ] ' l k e ~  m# 
Emax \ n j l z j l J  ;~; d In (mT) 

= \nj]Zj[  J In \ml  Yl// 

= \n, lz 112 In \m~7,/ (16) 

3. Liquid junction potentials, or membrane potentials, 
from the e.m.f, of homoionic transference cells, in 
terms of the Stokes-Robinson theory of ionic 
hydration 

In terms of the Stockholm Convention the (finite) e.m.f. 
E of Cell (7) can be written as E = Enght -- Ejcft + EL 

(or E = Eright -- Eleft -[- EM, if a membrane is inter- 
posed at It), where Enght and E~ert are the potentials of 
the terminal JZJ-reversible electrodes, and the intrinsic, 
positive or negative, sign of EL (or of EM) shall be 
ascertained by independent criteria. For the corre- 
sponding infinitesimal e.m.f, dE, the terminal electrode 
potentials differ from each other by an infinitesimal 
amount because of the infinitesimal gradient between 
rn + d m  and m, and thus one can write: 

dE = Eright -- Eleft -[- d E  L 

= (ko/lzj[) d i n  (mjTj) + dEL (17) 

where 7J is the activity coefficient of the single coion J~ 
at molality mj. Therefore, from Equations 9 and 17 
we have for dEL (or, analogously, dEM): 

dEe = (ke/[ Zj 1) [n(Zl'Ci/n J 

+ ZjzsMsm ) d In (roT) -- d in (mj7j) ] 
(18) 

If  IJ is a symmetrical electrolyte (that is, n+ = n ) 
and S = Water (henceforth denoted by subscript w), 
in terms of the Gibbs-Duhem equation we have: 

d ln(aw)  = - 2 m M w d l n ( m T )  (19) 

(7 = mean molal activity coefficient of I J) and, 
from the Stokes-Robinson theory of ionic hydration 
[11-13, 14], for the single-cation and the single-anion 
activity coefficients, respectively: 

d l n 7 _  = d l n 7  + [(h+ - h_) /2 ]d ln (aw)  

d l n T +  = dln~,  - [(h+ - h ) /2]d ln(aw)  (20) 

where h+, h_, and h = h__ + h would be the 
primary hydration numbers of the cation, the anion, 
and the whole (symmetrical) electrolyte, respectively. 
(The significance of these hydration numbers as result- 
ing from the Stokes-Robinson treatment has been 
discussed recently [12-15]). Therefore, since 

d in m (21) d l n m +  = d l n m  = 

from (19), (20) and (21) we obtain: 

d In (m_ ? ) 

d In (m+7+) 

= d In (my) 

- 2mMw [(h+ - h_)/21 d i n  (m7) 

= [1 - 2mMw (h+ - h )/21 d in (my) 

= d In (my) 

+ 2mMw [(h+ - h_)/2] d In (rnT) 

= [1 + 2mMw (h+ - h )/2] d In (my) 

(22) 

(22) into (18), with I = cation, we Now, introducing 
have: 
(dEL),_ + = k e {'c+ -k "c_ 

- 2mMw [rw - (h+ - h )/2]} 

x d In (my) 

ke {t+ - t_ - 2mMw 

x [% - (h+ - h )/2]} d ln(mT)  (23) 
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and, with I = anion, we have: 

(dEL)~=_ = k~ { - - z _  -- z+ + 2mmw 

x [~w -- (h+ - h_)/21} d in (my) 

= ke {t_ - t+ + 2mMw 

x [Zw - (h+ - h_)/21} d i n  (m~) 

(24) 

From (23) and (24) it is clear that (dEL)I=+ = 
- (dEL)I=_, as expected. Moreover, the condition for 
(dEL)j= + = 0, or (dEL)1= = 0, for a uni:univalent 
salt-bridge is: 

t+ - t_ - 2rnMw[% - (h+ - h_)/2] = 0, (25) 

or, identically: 

~+ + ~ - 2 m M w [ % -  (h+ - h )/2] = 0 

(26) 

to be compared with the traditional textbook con- 
dition t + -  t = 0, which evidently neglects the 
solven-transfer contribution to EL and thus could be 
used only to a first approximation. 

For unsymmetrical salt bridges, which are seldom 
considered for application [16], the Stokes-Robinson 
hydration theory leads to much more complicated 
equations than (22) and (23) above. However, still 
neglecting the solvent-transfer contribution, it was 
shown [17] that for a general IJ salt bridge (either 
symmetrical or unsymmetrical) the condition for 
(dEL)I=+ = 0, or (dEL),= = 0, is: 

z + - I ~ - I  = 0, 

or identically: n + t + -  n t = 0 (27) 

4. Results and discussion 

In terms of  the above rationale, cation transference 
numbers t+ = r+ and water transference numbers Zw 
have been determined here for two aqueous electro- 
lytes, one symmetrical (HC1) and one unsymmetrical 
(Li2SO4), for which e.m.f. E sets are available over 
large concentration ranges up to the highest concen- 
trations practicable. The largest data set for HC1 is 
that of  Davies and Steel [18] concerning the e.m.f. 
(E28) of the transference cell: 

Pt [H z J HC1 (m 1 ) II HCI (m2) [ H21Pt (28) 

at 298.15K, with rnl = fixed = 1.0012molkg -~ and 
m2 varying from 0.00995 up to 13.6molkg -1. These 
data are consistent with those (E28 and E29) of  King 
and Spiro [19], which were obtained at m2's up to 
8 mol kg-1 with a fixed rn~ = 1.0000 mol kg-~ (practi- 
Cally coincident with Davies and Steel's) with the 
chlorine-electrode cell: 

IrlC12J HC1 (m2) II HC1 (ml)] C1211r, (29) 

together with parallel measurements with the hydrogen- 
electrode Cell (28). Harned and Dreby [20] used the 
Cell (30): 

mgl mgCll HE1 (m2) II HE1 (ml)l mgfl I mg, (30) 

whose e.m.f, is equivalent to that of  Cell (29) and can 
still be referred to as E29, to cover the range from 0.002 
to 3 mol kg-  ~ HC1, the solution being carefully deoxy- 
genated by hydrogen flow to avoid mixed potentials. 
Cell (30) was also used by Lengyel et al. [21] but their 
results were criticized [19] for apparen[ non- 
deoxygenation of solutions and for excessive solubility 
of AgC1 leading to formation of  AgCI~- and AgC132- 
ions at concentrations increasing from 3 to 8mol 
kg 1. The e.m.f, data for Li2SO 4 have been obtained in 
the present work and concern the transference cell: 

Hgl Hg2SO4 ] Li2SO4 (m2) II LizSO4 (ml) I Hg2SO4 ] Hg 

(31) 

at 298.15K, with rn 2 = fixed = 0.1 molkg -1 and rn 1 
varying from 0.1 up to 3 mol kg-  1, and are to be found 
in Table 1. Details for the preparation of  the Hg2SO 4 
electrodes and the Li2SO 4 solutions, the temperature 
control, and the potentiometric measuring apparatus 
are exactly as in a recent paper [22]. Davies and Steel's, 
King and Spiro's and Harned and Dreby's e.m.f, data 
have been aggregated into one set referring to Cell 
(29), noting that E29  = E 2 9  . . . .  - E2s, for the same ml 
and m2 pair. The activity coefficient data required to 
calculate Emax along with Equation 10 have been taken 
from Robinson and Stokes's compilation [35]. Table 1 
also reports values of transference numbers as a func- 
tion of  the m 2 molality for the H + and Li + ions simply 
in keeping with the traditional scheme, which neglects 
the solvent transfer term in Equation 11, as 

tH+ ----- ~H+ = dE29/dEz9 . . . .  ; 

tei+=--Xei+ = dE31/dE31 . . . . .  (32) 

respectively. 
To account for the simultaneous concentration- 

dependence of  t+ and z w implied by Equation 11, t+ is 
here functionally expressed in terms of  the interionic 
attraction theory by means of Stokes's [23, 24] equation: 

t+ = 2+/A -- [2 ~ - � 8 9  

[A ~ - �89 (1 z+ I + [z_ [)f(I)] 

= [t ~ - 1/(1 z+ I + Iz_ I)]/[1 - �89 (I z+ I + I z_ I)f(I)/A ~ 

+ 1/(I z+ I + I z_ I), (33) 

where f(I) = B2II/(1 + aoBI ~) and for the ionic 
strength, L (here on the molal scale) we have I = m2 
for HCI and I = 3m 2 for Li2SO4, a0 is the ion-size 
parameter (already known for both HC1 and Li2SO4, 
[25, 26], B and B2 are known Debye-Hfickel constants, 
t ~ = 2 ~  ~ is the limiting (that is, infinite-dilution) 
transference number of the cation, and the limiting 
equivalent conductivity A ~ of  the electrolyte is known 
accurately from the literature [27]. In turn, rw is 
expressed by the equation 

0 (1 hm2Mw) (34) 27 w = "C  w - -  

based on the assumption of constancy of the ratio of  
0 Vw to the number of  moles of  unbound water [28], Zw 

is the limiting value of  the water transference number 
and h is the primary hydration number (assumed to be 
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Table 1. Cation transference numbers (~ + ) and water transference numbers (r~) at various molalities m2for aqueous Li2SO 4 (/rom the present 
e .mf .  measurements on the transference celt (3 t), with f ixed m l = O, 1 tool kg-t  ) and HCl (transference cell (29), whose e .mf .  's are not requoted 
here. as systematized from Refs. [ 18-21] to a f ixed m t = 1.0012 mot kg- t  ), as optimized by n~ltiple nonlinear regression based on Equations 

I, t3, 33, 34, columns B. The % ' s  obtained by Equation 32, which negteets water transference, are quoted for comparison in columns A. The 
values at infinite dilution (z~+ =- t~ ), together with the constants.for the relevant least-squares parabolas E = bEm,.~ + cE~,,.,. (Equation 12) 
are also quoted for  convenience 

m 2 (malkg -1) E3: (V) E31 . . . .  (V) "gLi+ Tw "OH+ Tw 

A B A B 

0.1 0.00000 0.00000 0.314 0.308 1.23 0.836 0.838 0.88 
0.2 0.00633 0.02042 0.299 0.306 1.20 0s 0.840 0.87 
0.3 0.00939 0.03237 0.290 0.305 1.18 0.827 0.841 0.87 
0.4 0.01217 0.04075 0.284 0.304 1.16 0.825 0.843 0.86 
0.5 0.01411 0.04728 0.279 0.303 l. 14 0.824 0.844 0.86 
0.6 0.01552 0.05274 0.275 0.302 I. 11 0.822 0.844 0.85 
0.7 0.01662 0.05742 0.271 0,302 1.09 0.821 0.845 0,85 
0.8 0.01777 0.06154 0,268 0.301 1.07 0.820 0.846 0.84 
1.0 0.01985 0.06854 0.263 0.300 1.02 0.818 0.847 0.84 
1, l 0.02089 0.07166 0,260 0.300 1.00 0.817 0,847 0.83 
1.2 0.02157 0.07474 0.258 0.300 0.98 0.816 0.848 0.83 
1.5 0.02330 0,08264 0.253 0.299 0.9I 0.813 0.849 0_82 
2,0 0.02620 0.09330 0.245 0,298 0.80 0.810 0.850 0.79 
2.5 0.02840 0.10344 0.237 0.297 0.69 0.807 0.851 0.77 
3.0 0.03047 0.11235 0.230 0.297 0.58 0.805 0.851 0.75 

v+0 _= t+~ (this work) 0,3140 _+ 0.0020 0.8263 _+ 0.0026 
~+0 _= t+~ (from [27]) 0.3259 0.8208 
b 0.3140 _+ 0.0020 0.8176 _+ 0.0019 
c (V -1) - 0 . 3 7 2  _+ 0.030 -0 .0783  _+ 0.0066 

Electrolyte: LizgO 4 HCt 

concentration-independent) of the electrolyte, respect- 
ively. Inserting (33) and (34) into (11) combined with 
(13) and explicit expressions for the three derivatives 
dq~/dr ~ , dqS/dr~ and d(o/dh, by using the SAS Statistical 
Package [29], the values of %,~ %,0 and h have been 
optimized as: 

o = t . 2 5 + 0 . t 6 ,  ~L~+~ = 0.3140 _+ 0.0020, % _ 

and h = 10 -4- 1 for Li2SO4;  (35a) 

0 = 0.880 + 0.071, zu +o = 0.8263 _+ 0.0026, ~w - 

and h = 2.5-+ 0.2 for HCl (35b) 

From this, z+ and rw have been calculated as functions 
of m 2 through (33) and (34), with the results shown in 
Table 1. 

The h values found reflect a remarkable hydration 
(at least considering the firmly-bound water molecules 
of the primary hydration sheaths of ions) for both 
HC1 and Li~SO4, and are reasonably consistent with 
observed single-ion values as hc> = 3.0 [15, 30, 31] 
and hLi+ = 10.9 [15, 32, 33]. 

0 and rw values obtained are of the same order The ~w 
of I mole per faraday as found by several researchers 
[8-10] for the so-called Washburn numbers, and are of 
the expected positive sign, that is ~- 1 mole of water 
per faraday is transferred from the anode (that is, 
negative terminal of cell) to the cathode, and the 
secondary hydration sheath of ions is likely involved, 
at least partly, together with the primary one in this 
process [28], considering also the peculiar features of 
structure and mobility mechanism of the aqueous H § 
ion. Obviously, the %'s decrease with increasing 
molality m~ of the electrolyte. 

Finally, the infinite-dilution rei~ and to+ values 
optimized through the present multiple non-linear 
regression analysis of E data are close to the literature 
values resulting from the limiting equivalent con- 
ductivities in the literature [27], which confirms the 
soundness of the present treatment. Furthermore, if 
one considers the finite-concentration ZL~+ and ~+ 
values in ToNe 1, one sees at once that between those 
obtained neglecting the water transfer (columns A, 
Equation 32) and those accounting for the water 
transfer (columns B, optimized by multiple regression 
through Equations 11, 12, 33, 34) there is a signifi- 
cant deviation, measured by the njZjZwMwm2 term in 
Equation 11, which increases with m 2 and amounts to 
-0 .067 for rLi+ and to --0.047 for ZH+, at the 
upper molality quoted for both Li2SO4 and HC1, that 
is, m2 = 3molkg -1. But for z.+ in HCI at 8 and 
13.6 mol kg-1 (not quoted in Table 1) such deviation 
would rise to - 0.070 and - 0.087, respectively. These 
amounts are of the same order (and must be so) as 
the corrections performed when converting Hittorf 
'apparent' into 'true' transference numbers [34] based 
on the traditional technique of adding to the electro- 
lyte solutions being electrolyzed appropriate atiquots 
of sucrose, raffinose or urea as a 'reference' substance 
uninfluenced by the passage of the electrolyzing 
current. The present treatment based on the above 
njzj%Mwm2 deviation term is, in fact, equivalent to 
converting 'apparent' into 'true' transference numbers 
also in the hitherto untouched area of the transference 
cell method. 

The procedure described above can be equally well 
applied to determinations of T 1 and zs in membranes 
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from the e.m.f, of homoionic transference cells of the 
type: 

J lIJ (m~) in S I I-selective membrane lIJ (m2) in S IJ 

(36) 

In this context, it is to be noted that the expected 
incidence of the solvent transfer contribution 
njZjZsM~m2, reference being made to the same m 2 
molality and the same rn 2 - rn~ gradient, is here often 
much greater than at a simple homoionic junction 
without membrane. In fact, the solvent transference 
number ~ in membranes for industrial electrochemistry 
or electrodialysis is typically of the order of 10 moles 
of water per faraday, or even more. In turn, the 
counterion transference number ~ is a parameter of 
paramount importance in membrane science because 
it represents the degree of ionic permselectivity of a 
membrane, the ideal (limiting) permselectivity being 
obviously reached when tl = 1, namely, I ~1 = 1/[ zll. 
This applies to natural and artificial membranes used 
in various areas, notably in industrial electrochemistry, 
electroanalytical chemistry, and bioelectrochemistry. 

5. Conclusions 

A definite correlation exists between ion transference 
number (T~), water transference number (%) and 
primary hydration number (h) of any electrolyte, as 
can be shown through the method of the e.m.f, of 
homoionic transference cell. Such a correlation must 
be duly considered when concentrated binary electro- 
lytes are studied to single out possible equitrans- 
ference properties (T+ = IT_ l) -- 1/(z+ + I z I), see 
[17]) for use as salt bridges for application in electro- 
chemistry and electroanalysis. It is desirable that 
independent methods be set up and tried system- 
atically to evaluate the above transference and 
hydration parameters in cases where the transference 
cell method is inapplicable due to the unavailability 
of electrodes reversible to the ions being studied. 
Furthermore, the accumulation of such data for 
solvents other than water is even more urgently 
awaited. Finally, it is worth noting that the procedure 
described here for the determination of transport 
parameters at homoionic junctions from the e.m.f, of 
homoionic transference cells, is equally applicable to 
the determination of such parameters in natural or 
artificial membranes: for example, those used in indus- 
trial electrochemistry and electroanalytical chemistry. 
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